Saturday, 30 May 2015

Q12,Paper 3,J 13. The solution of recurrence relation,



T(n) = 2T(floor (n1/2)) + log n is
(A) O(n log log log n)
(B) O(n log logn)
(C) O(log logn)
(D) O(logn log logn) 
Answer D.
 Master Method:
Master Method is a direct way to get the solution. The master method works only for following type of recurrences 
T(n) = aT(n/b) + f(n) 
highest degree of f(n) is c.
There are following three cases:
T(n)= O(nc) where a<
bc                       eq 1.
T(n)= O(nc log n) where bc=a. eq 2.
T(n)=O(nlogba) where a> bc.

In our case T(n) = 2T(floor (n1/2)) + n1/2

a=2, b=1, c=1/2 Then
bc=11/2< a. eq 3 follows
hence eq3. O(n log ba).

No comments:

Post a Comment

Note: only a member of this blog may post a comment.