Friday, 22 May 2015

Q12,paper 3,D 12. Let V1= 2I – J + K and V2= I + J – K, then the angle between V1& V2 and a vector perpendicular to both V1& V2 shall be :



(A) 90°and (–2I + J – 3K)
(B) 60° and (2I + J + 3K)
(C) 90°and (2I + J – 3K)
(D) 90°and (–2I – J + 3K)
Answer(d).
cosθ = (u · v) / (||u|| ||v ||).
(u · v) is the dot product of vectors.[2 -1 1][1 
                                                                      1
                                                                     -1]

calculated as (2-1-1) as 0 .

Length (||u||)=((2)2+-12+12)1/2
Length(||v ||).=(12+12+(-1)2)1/2
Cosθ=0/181/2 hence θ is 90degrees.

And
Vector perpendicular  to both shall be.


u×v  =i(u2v3-u3v2)-j(u1v3-v1u3)+(u1v2-u2v1)K.
=i(1-1)-j(-2-1)+(2+1)k
vector is (0i+3j+3k)
let us check whether dot product of 2i-j+k and (0i+3j+3k) are perpendicular their dot product is zero. Hence perpendicular.
Let us check (0i,3j,3k) dot product with (I,j,-k) and dot product is zero.
 We can say that (0i,3j,3k ) is perpendicular to both vectors.
                  

1 comment:

  1. very nice sir.. i get detailed explaination of ugc questions only on your website.. simple and easy solutions to understand......
    thank you very much.. message me sir if i can do work with you on blogging or content writing.

    ReplyDelete

Note: only a member of this blog may post a comment.